Cambridge Assessment

Cambridge IGCSE[™]

CHEMISTRY

Paper 2 Multiple Choice (Extended)

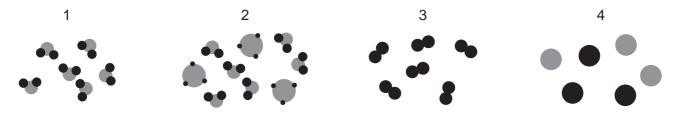
0620/23 May/June 2023 45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet Soft clean eraser Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are **forty** questions on this paper. Answer **all** questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do **not** use correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.


INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 Nitrogen is heated in a balloon, which expands slightly.

Which statements about the molecules of nitrogen are correct?

- 1 They move further apart.
- 2 They move more quickly.
- 3 They remain the same distance apart.
- 4 Their speed remains unchanged.
- **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4
- 2 The diagrams represent some elements, compounds and mixtures.

Which row describes the numbered substances?

	1	2	3	4
Α	element	mixture of compounds	compound	mixture of elements
в	compound	mixture of compounds	element	mixture of elements
С	element	mixture of elements	compound	mixture of compounds
D	compound	mixture of elements	element	mixture of compounds

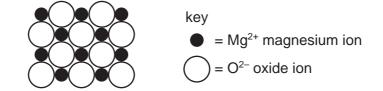
3 Two atoms, X and Y, have the same mass number but different atomic numbers.

Which statement about X and Y is correct?

- **A** They have the same number of protons.
- **B** They have the same number of electrons.
- **C** They are in the same group of the Periodic Table.
- **D** They have different numbers of neutrons.

4 A sample of pure iron contains three isotopes only.

percentage abundance of isotope/%	isotope
2	<i>"</i> Fe
6	⁵⁴ Fe
92	⁵⁶ Fe


The iron in the sample has a relative atomic mass of 55.9.

What is the value of n?

A 53 **B** 55 **C** 57 **D** 58

5 Magnesium oxide is a white solid at room temperature and pressure.

Part of the structure of solid magnesium oxide is shown.

Three statements are listed.

- 1 Magnesium ions are smaller than oxide ions because they contain fewer electrons.
- 2 Magnesium oxide has good electrical conductivity when molten because the ions are mobile.
- 3 Magnesium oxide has a high melting point because of the strong electrostatic attraction between the ions and delocalised electrons in the giant lattice.

Which statements are correct?

A 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 2 only

6 In which molecule are all the outer-shell electrons involved in covalent bonding?

A Cl_2 **B** CH_4 **C** HCl **D** NH_3

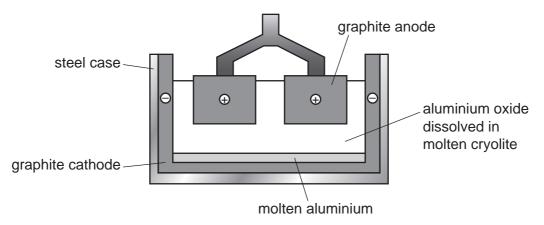
7 Which row describes the properties of silicon(IV) oxide?

	giant covalent structure	melting point
Α	no	high
В	no	low
С	yes	high
D	yes	low

8 Which row describes the structure of a solid metal and explains the property?

	structure of solid metal	property of solid metal
Α	lattice of negative ions in a sea of electrons	conducts electricity because the electrons are free to move
В	lattice of negative ions in a sea of electrons	is malleable because the layers of ions can slide over each other
С	lattice of positive ions in a sea of electrons	conducts electricity because the ions are free to move
D	lattice of positive ions in a sea of electrons	is malleable because the layers of ions can slide over each other

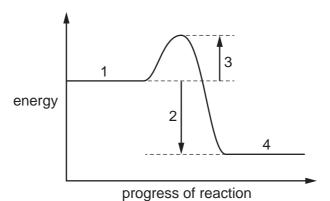
9 What is the formula of potassium oxide?


A F	P ₂ O	В	PO ₂	С	КО	D	K_2O
-----	------------------	---	-----------------	---	----	---	--------

10 A dilute aqueous solution of sodium bromide is electrolysed using inert electrodes.

Which row identifies the product at the cathode and at the anode?

	cathode	anode
Α	bromine	hydrogen
в	hydrogen	bromine
С	hydrogen	oxygen
D	oxygen	hydrogen


11 Aluminium is extracted by electrolysis, as shown.

Which row shows the ionic half-equations at the cathode and the anode?

	cathode	anode
Α	$Al^{3+} \rightarrow Al + 3e^{-}$	$2O^{2-} \rightarrow O_2 + 4e^-$
в	$Al^{3+} \rightarrow Al + 3e^{-}$	$\rm 2O^{2-}~+~4e^- \rightarrow ~O_2$
С	Al^{3+} + $3e^- \rightarrow Al$	$2O^{2-} \rightarrow O_2$ + $4e^-$
D	Al^{3+} + $3e^- \rightarrow Al$	$\rm 2O^{2-}~+~4e^- \rightarrow ~O_2$

12 The reaction pathway diagram for an exothermic reaction is shown.

Which row identifies labels 1, 2, 3 and 4?

	1	2	3	4
Α	reactants	ΔH	E_{a}	products
в	products	ΔH	E_{a}	reactants
С	reactants	Ea	ΔH	products
D	products	Ea	ΔH	reactants

13 The equation for the complete combustion of ethene is shown.

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$$

Some bond energies are listed.

bond	bond energy in kJ/mol
C–H	412
C–C	348
C=C	612
C–O	360
C=O	743
0–0	146
O=O	496
O–H	463

What is the overall energy change when one mole of ethene is completely burned?

A -456 B -1076 C -1340 D	-2126
--	-------

14 Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen.

Why does magnesium powder react faster than magnesium ribbon?

- **A** The magnesium atoms in the powder have a lower activation energy.
- **B** The powder has a smaller surface area.
- **C** The magnesium atoms in the powder have more frequent collisions with acid particles.
- **D** The magnesium atoms in the powder have greater kinetic energy.
- **15** Which row shows the conditions used in the Contact process?

	catalyst	pressure /atm	temperature /°C
Α	iron	2	100
в	iron	200	450
С	vanadium (V) oxide	2	450
D	vanadium (V) oxide	200	100

16 A student heats hydrated copper(II) sulfate. The blue crystals change to a white powder.

How can the student reverse this reaction?

- **A** Add anhydrous copper(II) sulfate to the white powder.
- **B** Add water to the white powder.
- **C** Cool the white powder.
- **D** Reheat the white powder.
- 17 Which reaction of hydrochloric acid is a redox reaction?
 - **A** MgCO₃ + 2HC $l \rightarrow$ MgC l_2 + H₂O + CO₂
 - $\textbf{B} \quad Mg(OH)_2 \ \textbf{+} \ 2HCl \ \rightarrow \ MgCl_2 \ \textbf{+} \ 2H_2O$
 - $\textbf{C} \quad \text{MgO} \ \textbf{+} \ 2\text{HC}l \ \rightarrow \ \text{MgC}l_2 \ \textbf{+} \ \text{H}_2\text{O}$
 - $\textbf{D} \quad Mg \ \textbf{+} \ 2HC\mathit{l} \ \rightarrow \ MgC\mathit{l}_2 \ \textbf{+} \ H_2$
- **18** Which oxide is amphoteric?
- **19** Four statements about strong acids are listed.
 - 1 They react with carbonates to form carbon dioxide.
 - 2 They completely dissociate in aqueous solution.
 - 3 They react with ammonium salts to form ammonia.
 - 4 They are proton acceptors.

Which statements are correct?

A 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4

- 20 Which reaction mixture will produce a precipitate?
 - $\label{eq:aqueous Na2CO3} \textbf{A} \quad \text{aqueous Na2CO3} \text{ and aqueous CuSO4}$
 - $\textbf{B} \quad \text{dilute } H_2 SO_4 \text{ and aqueous NaOH}$
 - \mathbf{C} dilute HNO₃ and solid MgO
 - $\textbf{D} \quad \text{solid CuO and dilute } H_2 SO_4$

- **21** Which set of elements shows the change from metallic to non-metallic character across a period of the Periodic Table?
 - **A** beryllium \rightarrow magnesium \rightarrow calcium
 - $\textbf{B} \quad \text{fluorine} \rightarrow \text{bromine} \rightarrow \text{iodine}$
 - $\textbf{C} \quad \text{oxygen} \rightarrow \text{boron} \rightarrow \text{lithium}$
 - $\textbf{D} \quad \text{sodium} \rightarrow \text{silicon} \rightarrow \text{chlorine}$
- **22** A sample of ethanoic acid and a sample of hydrochloric acid have the same concentration.

How do the hydrogen ion concentration and pH of ethanoic acid compare to those of hydrochloric acid?

	ethanoic acid compared to hydrochloric acid		
	hydrogen ion concentration	рН	
Α	higher	higher	
В	higher	lower	
С	lower	higher	
D	lower	lower	

- 23 What is a typical property of transition elements?
 - A can act as catalysts
 - B poor electrical conductivity
 - **C** low melting point
 - **D** low density
- 24 Which statement about copper or aluminium is correct?
 - **A** Aluminium is more dense than copper.
 - **B** Aluminium is less reactive than copper.
 - **C** Copper has high ductility.
 - **D** Copper has poor electrical conductivity.

25 Water from a reservoir flows to the water works where purification process 1 takes place followed by process 2.

What are processes 1 and 2?

	process 1	process 2
Α	chlorination	filtration
в	filtration	chlorination
С	fractional distillation	filtration
D	filtration	fractional distillation

26 Calcium reacts with cold water to produce hydrogen.

Lead reacts slowly when heated in air to form an oxide but has almost no reaction with steam.

Silver does not react with either air or water.

Zinc reacts when heated with steam to produce hydrogen.

What is the order of reactivity starting with the least reactive?

	least reactive most reactive													
Α	calcium	lead	zinc	silver										
в	calcium	zinc	lead	silver										
С	silver	lead	zinc	calcium										
D	silver	zinc	lead	calcium										

27 Blocks of magnesium are attached to the bottom of a steel boat to prevent rusting.

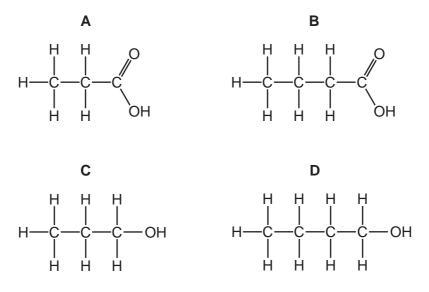
Which equation describes a change that prevents the steel from rusting?

- **A** Fe \rightarrow Fe³⁺ + 3e⁻
- $\textbf{B} \quad \text{Fe}_2\text{O}_3 \ \textbf{+} \ 3\text{Mg} \ \rightarrow \ 2\text{Fe} \ \textbf{+} \ 3\text{MgO}$
- **C** $3Mg^{2+}$ + 2Fe \rightarrow 2Fe³⁺ + 3Mg
- **D** Mg \rightarrow Mg²⁺ + 2e⁻

- 28 Which statements about the extraction of iron in a blast furnace are correct?
 - 1 The temperature inside the blast furnace is increased by burning carbon.
 - 2 Iron(III) oxide is reduced to iron by carbon monoxide.
 - 3 The thermal decomposition of calcium carbonate forms slag.
 - 4 Slag reacts with acidic impurities.

A 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

- **29** Which statements about water are correct?
 - 1 Tap water has fewer impurities than distilled water.
 - 2 Tap water will turn anhydrous cobalt(II) chloride pink.
 - 3 The domestic water supply is treated with carbon to kill microbes.
 - 4 Phosphates from fertilisers can cause deoxygenation of water.
 - **A** 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 3 and 4
- **30** Oxides of nitrogen form in car engines and are removed by catalytic converters.


Which equation represents a reaction that occurs in a catalytic converter?

- $\textbf{A} \quad \textbf{CO} \ \textbf{+} \ \textbf{NO}_2 \ \rightarrow \ \textbf{NO} \ \textbf{+} \ \textbf{CO}_2$
- $\textbf{B} \quad 2CO \ \textbf{+} \ 2NO \ \rightarrow \ \textbf{N}_2 \ \textbf{+} \ 2CO_2$
- $\textbf{C} \quad \text{CO}_2 \ \textbf{+} \ \text{NO} \ \rightarrow \ \text{NO}_2 \ \textbf{+} \ \text{CO}$
- $\label{eq:constraint} \begin{array}{cccc} \textbf{D} & CO_2 \mbox{ + } 2NO_2 \mbox{ \rightarrow } N_2 \mbox{ + } 3O_2 \mbox{ + } C \end{array}$
- **31** An alkene is represented by the formula $CH_3CH=CH_2$.

Which name is given to this type of formula?

- A displayed
- **B** empirical
- **C** general
- D structural

32 What is the structure of propanoic acid?

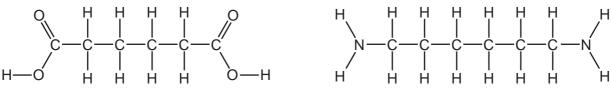
33 Butane reacts with chlorine in the presence of ultraviolet radiation.

What is the equation for this reaction?

- $\label{eq:constraint} \textbf{A} \quad C_4H_{10} \ \textbf{+} \ Cl_2 \ \rightarrow \ C_4H_8Cl_2 \ \textbf{+} \ H_2$
- $\label{eq:constraint} \begin{array}{ccc} \textbf{C} & C_4 H_{10} \mbox{ + } C \, l_2 \mbox{ \rightarrow } 2 C_2 H_5 C \, l \mbox{ + } H_2 \end{array}$
- $\label{eq:constraint} \begin{array}{cccc} \textbf{D} & C_4H_{10} \mbox{ + } Cl_2 \mbox{ \rightarrow } C_2H_4 \mbox{ + } C_2H_5Cl \mbox{ + } HCl \end{array}$
- **34** A hydrocarbon P is cracked to make compound Q and hydrogen.

Compound R is formed by the addition polymerisation of compound Q.

To which homologous series do P, Q and R belong?

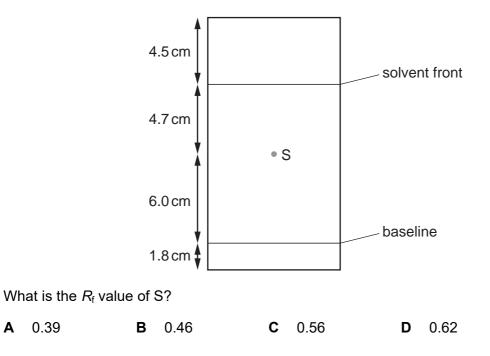

	alkene	alkane
Α	P only	Q and R
в	Q only	P and R
С	P and Q	R only
D	P and R	Q only

- **35** Which substances are structural isomers?
 - A but-2-ene and propene
 - B ethyl ethanoate and butanoic acid
 - **C** methyl methanoate and ethanol
 - **D** propan-1-ol and butan-1-ol

- **36** Ethanol is produced by:
 - 1 the catalytic addition of steam to ethene
 - 2 fermentation.

Which statement is correct?

- A Both processes use similar amounts of energy.
- **B** Both processes use a catalyst.
- **C** Process 1 uses a temperature of 25–35 °C.
- **D** Process 2 uses a pressure of 60 atm.
- **37** The two monomers shown can be used to form a condensation polymer.


Which small molecule is released during this reaction?

38 Dilute hydrochloric acid is titrated into a conical flask containing sodium hydroxide solution and a few drops of methyl orange indicator.

Which piece of apparatus is used to add the hydrochloric acid?

- A beaker
- B burette
- **C** measuring cylinder
- D pipette

39 The chromatogram obtained from a chromatography experiment on substance S is shown.

40 Element X burns in air to form an acidic gas that decolourises potassium manganate(VII).

What is X?

- A carbon
- **B** nitrogen
- C magnesium
- D sulfur

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

																1	6																		
	NIII	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84		40 X	Xe	xenon 131	86	Rn	radon -	118	Og	oganesson	I											
	١١٨				6	LL	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80		° .	_	iodine 127	85	At	astatine -	117	Ъ S	tennessine	I											
	N				8	0	oxygen 16	16	ი	sulfur 32	34	Se	selenium 79		70	Те	tellurium 128	84	Ро	polonium –	116	Ľ	livermorium	I											
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	0	- (Sb	antimony 122	83	Ē	bismuth 209	115	Mc	moscovium	I											
	2				9	ပ	carbon 12	14	S.	silicon 28	32	Ge	germanium 73		00 (Sn	tin 119	82	Pb	lead 207	114	۶l	flerovium	I											
	≡				5	Ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70		· + 4		indium 115	81	11	thallium 204	113	Νh	nihonium	I											
											30	Zn	zinc	0	6 ⁴ 0 (Ö	cadmium 112	80	Hg	mercury 201	112	C	copernicium	I											
											29	Cu	copper 6.4	1 1	4 .	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium	I											
Group											28	ïZ	nickel 50	0 4	40	Ъ	palladium 106	78	Ţ	platinum 195	110	Ds	darmstadtium	I											
Gro					1						27	ပိ	cobalt 50		0 + 1	Rh	rhodium 103	77	<u>_</u>	iridium 192	109	Mt	meitnerium	I											
		-	т	hydrogen 1							26	Fе	iron 56	0 7	44 44	Ru	ruthenium 101	76	SO	osmium 190	108	Hs	hassium	I											
								-			25	Mn	manganese 55	8	54 	<u>р</u>	technetium -	75	Re	rhenium 186	107	Bh	bohrium	I											
						lodi	ass				24	ັບ	chromium 52	40	44	Мо	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium	I											
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	5 7	4	qN	niobium 93	73	ца	tantalum 181	105	Db	dubnium	I											
																		atc	rel				22	F	titanium 48	¢ ¢	0 1	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Ŗ	rutherfordium
											21	Sc	scandium 45			~	yttrium 89	57-71	lanthanoids		89-103	actinoids													
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40		ος (ي ک	strontium 88	56	Ba	barium 137	88	Ra	radium	I											
	_				e	:	lithium 7	1	Na	sodium 23	19	¥	potassium 30	00	3/	Rb	rubidium 85	55	Cs	caesium 133	87	Ъ	francium	I											

ure (r.t.p.).
pressure
and
ie volume of one mole of any gas is 24 dm 3 at room temperature and pressu
room
at
is 24 dm ³ at
<u>0</u>
gas
fany
0
mole
one
of
volume of one
The

PMT

71 Lu Iutetium 175 103 Lr awrencium

70 Yby ytterbium 173 102 NO NO

69 Tm thulium 169 101 Md mendelevium

67 holmium 165 99 einsteinium

66 dysprosium 163 98 Cf Cf

65 Tb 159 159 97 97 berkelium

64 Gd 157 96 96 curium curium

63 Eu ^{europium} 152 95 95 americium

62 Samarium 150 94 **Pu**

61 Promethium 93 93 93 93

60 neodymium 144 U 238 238

59 Praseodymium 141 91 Pa Protactinium 231

58 Cerium 140 90 90 90 232 232

57 La lanthanum 139 89 89 AC actinium

actinoids

lanthanoids

